Инженеры Google «видоизменяют» ИИ, чтобы сделать его независимым от человека

Инженеры Google  «видоизменяют» ИИ, чтобы сделать его независимым от человека ИИ

Большая часть работы, выполняемой искусственным интеллектом, включает в себя учебный процесс, известный как машинное обучение.

ИИ становится лучше при выполнении таких задач, как распознавание чего-либо или составление карты маршрута, чем дольше он это делает.

Теперь та же самая техника используется для создания новых систем ИИ без вмешательства человека.

В течение многих лет инженеры Google работали над необычайно умной системой машинного обучения, известной как система AutoML (или система автоматического машинного обучения), которая уже способна создавать ИИ.

Теперь исследователи внесли изменения в концепцию эволюции Дарвина и показали, что возможно создавать программы ИИ, которые продолжают совершенствоваться быстрее, если бы люди кодировали их вручную.

Новая система называется AutoML-Zero, она может привести к быстрому развитию более интеллектуальных систем — например, нейронных сетей, предназначенных для более точной имитации человеческого мозга.

«Сегодня возможно автоматически обнаружить полные алгоритмы машинного обучения, просто используя базовые математические операции в качестве строительных блоков», — пишут исследователи в своей статье. «Мы демонстрируем это, вводя новую концепцию, которая значительно снижает влияние человека через общее пространство поиска».

Первоначальная система AutoML предназначена для того, чтобы приложениям было проще использовать машинное обучение, и она уже включает в себя множество автоматических функций, но AutoML-Zero практически не требует написанного человеком кода.

Используя простой трехэтапный процесс — настройку, прогнозирование и обучение — его можно рассматривать как машинное обучение с нуля.

Система начинается с выбора из 100 алгоритмов, сделанных путем случайного объединения простых математических операций. Сложный процесс проб и ошибок затем определяет лучших, которые сохраняются — с некоторыми изменениями — для следующего раунда испытаний. Другими словами, нейронная сеть постоянно эволюционирует.

Когда создается новый код, он проверяется на задачах ИИ — например, обнаружение разницы между изображением грузовика и изображением собаки — и наиболее эффективные алгоритмы затем сохраняются для будущей итерации. Как выживание сильнейшего.

И это тоже быстро: исследователи считают, что в секунду можно загружать до 10 000 возможных алгоритмов на процессор (чем больше компьютерных процессоров доступно для задачи, тем быстрее она может работать).

В конце концов, это должно привести к тому, что системы искусственного интеллекта станут более широко используемыми и доступными для программистов, не имеющих опыта в разработке ИИ.

Работа по улучшению AutoML-Zero продолжается, в надежде, что в конечном итоге он сможет разработать алгоритмы, о которых простые программисты никогда бы не подумали.

«В то время как большинство людей делали маленькие шаги, [исследователи] совершили гигантский прыжок в неизвестность», — сказал Эдд Гент журналу Science, ученый из Техасского университета в Остине. «Это одна из тех работ, которая может начать множество будущих исследований».

Работа еще не опубликована в рецензируемом журнале, но ее можно просмотреть на arXiv.org.

Источники: Фото: uscybersecurity.net

logo