Новый расчет мюона намекает на неизвестную физику, которую еще не видели
Эксперименты с характерным колебанием тяжеловесного родственника электрона, называемого мюоном, постоянно обнаруживают, что что-то не совсем складывается, указывая путь к неизвестной физике.
Почти 20 лет после того, как исследователи из Брукхейвена Ускоритель частиц в Нью-Йорке впервые предоставил доказательства аномалии, сотни ученых, работающих с коллаборацией Muon g-2, только что объявили о последнем измерении движения мюона в электромагнитном поле.
Основываясь на довольно существенных данных. Количество свежих данных, собранных с помощью Национальной ускорительной лаборатории Ферми Министерства энергетики США, новый анализ подтверждает разницу между ожиданиями и результатами в 116 592 055 x 10-11 .
Это крошечное число, чтобы быть уверенным. Но это может сулить несколько больших новых открытий. А с точностью до 0,2 части на миллион анализ можно сравнить с оценкой расстояния между двумя людьми, находящимися на разных концах США и находящимися на расстоянии менее метра (пары футов).
«Это измерение — невероятное экспериментальное достижение», — говорит Питер Винтер, физик из Аргоннской национальной лаборатории в Иллинойсе. «Снижение систематической неопределенности до такого уровня — это большое дело, и мы не ожидали, что сможем достичь этого так скоро».
Мюоны живут в среднем немногим более пары микросекунд. Но за это короткое время их массивные тела ведут себя во многом как электрон, вращаясь туда-сюда, когда токи электромагнетизма противодействуют тому, что известно как их магнитный момент.
Физики довольно хорошо представляют себе, как мюоны должны двигаться в электромагнитном поле. У них даже есть буква, описывающая это движение – г, обозначающая гиромагнитное отношение.
На танцполе, где есть только ритм электромагнетизма и движущийся мюон, теоретически можно предсказать каждое вращение, что дает значение g. из 2.
К сожалению, квантовый танцпол — довольно хаотичное место, переполненное виртуальными частицами, парящими на грани существования. Это размытие объектов толкает и спотыкает мюон тонкими способами, из-за чего его бугалу смещается в сторону.
Их присутствие предполагает, что g должно быть немного больше, чем 2. По логике, вычитание 2 из g должно указывать на сигнатуру все эти квантовые столкновения.
Судя по книге, каждый отдельный квантовый незваный гость и его характерные ходы должны иметь место в Стандартной модели. Мы можем даже сложить эти эффекты и учесть их при предсказании истинного движения мюона с помощью одного числа.
Однако это число не является тем, что обнаружили экспериментаторы в ходе серии экспериментов, проведенных в Брукхейвене. 20 лет назад. И это не то, что исследователи обнаружили, используя оборудование Fermilab в серии столкновений, проведенной в 2018 году.
Несоответствие между ожиданиями и результатами в физике элементарных частиц обычно сводится к одной из трех вещей. Это либо статистический сбой, либо ошибка эксперимента, либо теоретическая брешь.
Из них третья возможность — главный приз — дыра в Стандартной модели, которую так хочется заткнуть.
Учитывая, что такие явления, как темная энергия и темная материя, в настоящее время не могут быть легко объяснены с помощью Стандартной модели физики, мы уже подозреваем, что с ней есть некоторые проблемы.
Сотрудничество с Muon g-2 подтверждает g- 2, основанное на нескольких запусках ускорителя частиц Фермилаб в 2019 и 2020 годах, мы можем быть в два раза более уверены в существовании новых частиц и сил, которые нам еще предстоит идентифицировать.
В ближайшие годы сотрудничество будет объедините результаты прошлых экспериментов с более свежими данными, чтобы создать еще более убедительный аргумент, который может соответствовать высоким стандартам достоверности и навсегда изменить физику.
Это исследование было отправлено в Physical Review. Письма для рецензирования.