Новости

Прорыв в физике: ИИ успешно управляет плазмой в эксперименте по ядерному синтезу

Успешное достижение ядерного синтеза обещает предоставить безграничный, устойчивый источник чистой энергии, но мы сможем реализовать эту невероятную мечту только в том случае, если сможем освоить сложную физику, происходящую внутри реактора.

На протяжении десятилетий ученые предпринимали постепенные шаги к этой цели, но остается много проблем. Одним из основных препятствий является успешное управление нестабильной и перегретой плазмой в реакторе, но новый подход показывает, как мы можем это сделать.

Совместными усилиями Швейцарского плазменного центра (SPC) EPFL и исследовательской компании DeepMind, занимающейся исследованиями в области искусственного интеллекта (ИИ), ученые использовали систему глубокого обучения (RL) для изучения нюансов поведения и управления плазмой внутри термоядерного токамака — устройства, в котором используется ряд магнитных катушек, размещенных вокруг реактора, для контроля и управления плазмой внутри него.

Это нелегкий баланс, поскольку катушки требуют огромного количества тонких регулировок напряжения, до тысяч раз в секунду, чтобы успешно удерживать плазму в магнитных полях.

Таким образом, для поддержания ядерных термоядерных реакций, которые включают поддержание стабильной температуры плазмы в сотни миллионов градусов по Цельсию, более горячей, чем даже ядро Солнца, необходимы сложные многослойные системы для управления катушками.

Однако в новом исследовании исследователи показывают, что система ИИ может сама контролировать выполнение задачи.

3D-модель вакуумного токомака TCV. (DeepMind/SPC/EPFL)

«Используя архитектуру обучения, которая сочетает в себе глубокое обучение и симулированную среду, мы создали контроллеры, которые могут поддерживать устойчивость плазмы и использоваться для точного придания ей различных форм», — объясняет команда в блоге DeepMind.

Исследователи обучили свою систему искусственного интеллекта на симуляторе токамака, в котором система путем проб и ошибок обнаружила, как справляться со сложностями магнитного удержания плазмы.

После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе.

Управляя токамаком SPC с переменной конфигурацией (TCV), ИИ преобразовывал плазму в различные формы внутри реактора, в том числе такую, которая никогда ранее не наблюдалась в TCV: стабилизирующие «капли», в которых две плазмы сосуществовали одновременно внутри реактора.

Визуализация управляемых форм плазмы. (DeepMind/SPC/EPFL)

В дополнение к обычным формам ИИ также может создавать расширенные конфигурации, придавая плазме форму «негативной треугольности» и «снежинки».

Каждое из этих проявлений обладает разным потенциалом для сбора энергии в будущем, если мы сможем поддерживать реакции ядерного синтеза.

По словам исследователей, магнитное мастерство этих плазменных образований представляет собой «одну из самых сложных систем реального мира, к которым применялось обучение с подкреплением», и может установить радикально новое направление в разработке реальных токамаков.

О результатах сообщается в Nature.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Ученые показали первый крупный план звезды за пределами нашей галактики, сделанный человечеством

Звезда, находящаяся на расстоянии более 160 000 световых лет от Земли, только что стала эпическим объектом…

22.11.2024

Астрономы представили впечатляющие новые изображения лица Солнца

74 миллиона километров — это огромное расстояние, с которого можно что-то наблюдать. Но 74 миллиона…

22.11.2024

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024