Успешное достижение ядерного синтеза обещает предоставить безграничный, устойчивый источник чистой энергии, но мы сможем реализовать эту невероятную мечту только в том случае, если сможем освоить сложную физику, происходящую внутри реактора.
На протяжении десятилетий ученые предпринимали постепенные шаги к этой цели, но остается много проблем. Одним из основных препятствий является успешное управление нестабильной и перегретой плазмой в реакторе, но новый подход показывает, как мы можем это сделать.
Совместными усилиями Швейцарского плазменного центра (SPC) EPFL и исследовательской компании DeepMind, занимающейся исследованиями в области искусственного интеллекта (ИИ), ученые использовали систему глубокого обучения (RL) для изучения нюансов поведения и управления плазмой внутри термоядерного токамака — устройства, в котором используется ряд магнитных катушек, размещенных вокруг реактора, для контроля и управления плазмой внутри него.
Это нелегкий баланс, поскольку катушки требуют огромного количества тонких регулировок напряжения, до тысяч раз в секунду, чтобы успешно удерживать плазму в магнитных полях.
Таким образом, для поддержания ядерных термоядерных реакций, которые включают поддержание стабильной температуры плазмы в сотни миллионов градусов по Цельсию, более горячей, чем даже ядро Солнца, необходимы сложные многослойные системы для управления катушками.
Однако в новом исследовании исследователи показывают, что система ИИ может сама контролировать выполнение задачи.
«Используя архитектуру обучения, которая сочетает в себе глубокое обучение и симулированную среду, мы создали контроллеры, которые могут поддерживать устойчивость плазмы и использоваться для точного придания ей различных форм», — объясняет команда в блоге DeepMind.
Исследователи обучили свою систему искусственного интеллекта на симуляторе токамака, в котором система путем проб и ошибок обнаружила, как справляться со сложностями магнитного удержания плазмы.
После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе.
Управляя токамаком SPC с переменной конфигурацией (TCV), ИИ преобразовывал плазму в различные формы внутри реактора, в том числе такую, которая никогда ранее не наблюдалась в TCV: стабилизирующие «капли», в которых две плазмы сосуществовали одновременно внутри реактора.
В дополнение к обычным формам ИИ также может создавать расширенные конфигурации, придавая плазме форму «негативной треугольности» и «снежинки».
Каждое из этих проявлений обладает разным потенциалом для сбора энергии в будущем, если мы сможем поддерживать реакции ядерного синтеза.
По словам исследователей, магнитное мастерство этих плазменных образований представляет собой «одну из самых сложных систем реального мира, к которым применялось обучение с подкреплением», и может установить радикально новое направление в разработке реальных токамаков.
О результатах сообщается в Nature.
Астрофизики как никогда близки к разгадке тайны того, что составляет почти 70 процентов Вселенной.Теперь опубликован…
В каждой ситуации есть светлая сторона. В 2032 году сама Луна может иметь особенно яркую…
Коробка, полная вирусов и бактерий, завершила свой обратный путь на Международную космическую станцию, и изменения,…
Мы знали о знаменитой туманности Кольцо уже почти 250 лет, но только сейчас астрономы обнаружили…
Внутри ядер ледяных планет-гигантов давление и температура настолько экстремальны, что находящаяся там вода переходит в…
Мы знаем, что произойдет с Солнцем и нашей Солнечной системой, потому что мы можем заглянуть…