Суперспециальный материал графен продолжает удивлять и очаровывать ученых, на этот раз обнаруживая редкое электронное состояние, называемое «ферроваллетричностью», которое возникает, когда графен складывается в определенную пятислойную комбинацию.
В этом новом состоянии стопка графена демонстрирует странное и удивительное магнитное и электронное поведение, как сообщили исследователи из Массачусетского технологического института (MIT), Гарвардского университета и Национального института материаловедения в Японии. >
По мнению команды, использование графена таким образом может помочь в разработке как классических, так и квантовых компьютеров, особенно с точки зрения создания решений для хранения данных, которые предлагают большую емкость, но при этом требуют относительно мало энергии для работы.
p>
«Графен — потрясающий материал», — говорит физик Лун Джу из Массачусетского технологического института. «Каждый добавленный вами слой дает вам, по сути, новый материал».
«И теперь мы впервые видим ферроваллетричность и нетрадиционный магнетизм в пяти слоях графена. Но мы не видим это свойство в одном, двух, трех или четырех слоях».
Ферроидные материалы демонстрируют какое-то скоординированное поведение в своих электрических, магнитных или структурных свойствах — например, магнит, у которого есть электроны, которые все они вращаются и направлены в одном направлении, не направляясь внешним магнитным полем.
В других материалах электроны могут вместо этого выстраиваться в крошечные водовороты. Чтобы быть мультиферроиком, один и тот же материал должен демонстрировать несколько типов скоординированного поведения.
Основываясь на своих расчетах, исследователи предположили, что графен может стать мультиферроиком, если пять слоев будут расположены в виде ромбоэдра (что похоже на проволочную сетку). заборы, сложенные друг на друга).
Важно, что это создает среду, в которой электроны замедляются, и начинает происходить выравнивание ферроидов. Благодаря тщательному анализу чешуек графена, которые естественным образом образовали пять слоев и имели именно эту структуру, исследователи действительно увидели мультиферроическое поведение.
Во-первых, существовал нетрадиционный магнетизм, при котором электроны координировали свое орбитальное движение ( а не их вращение или вращение, как в стандартном магните). Во-вторых, электроны продемонстрировали тенденцию селиться в одной конкретной электронной «долине» (или низкоэнергетическом состоянии), тогда как в стандартном графене они не проявляют никаких предпочтений.
Команда продемонстрировала, что оба эти состояния ферроидные свойства можно контролировать с помощью электрического поля. Хотя на данный момент все это остается очень высоким техническим уровнем, в конечном итоге это можно будет использовать для разработки компьютерных чипов, которые смогут хранить вдвое больше данных, поскольку электронами материала можно манипулировать двумя способами, а не одним.
«Мы знали, что в этой структуре произойдет что-то интересное, но не знали, что именно, пока не протестировали это», — говорит физик Чжэнгуан Лу из Массачусетского технологического института.
«Мы впервые видим ферро-долейтроника, а также впервые мы увидели сосуществование ферро-долейтроники с нетрадиционным ферромагнетиком».
Исследование было опубликовано в журнале Nature.
Исследователи ближе к выращиванию куриных самородков в лаборатории благодаря использованию крошечных полых волокон, которые имитируют…
Земля вращается, солнце вращается, Млечный путь вращается - и новая модель предполагает, что вся вселенная…
Астрономы объявили в четверг, что обнаружили наиболее многообещающие «намеки» потенциальной жизни на планете за пределами…
Астрономы давно озадачены двумя странными явлениями в основе нашей галактики. Во-первых, газ в центральной молекулярной…
За последнюю неделю было несколько заголовков о чат -боте ИИ, официально проходя тест Тьюринга. Одна…
Квантовая физика уже ощущается как головоломка, но теперь ученые сделали ее более буквальным. Команда математиков…