Категории: Новости

Световые микроскопы видят меньше, чем когда-либо, используя странный квантовый трюк

Разрешение световых микроскопов значительно возросло благодаря умелому использованию распространенного явления в квантовой физике.

Направляя запутанные световые потоки по разным путям и рекомбинируя их волны, можно наблюдать на деликатные объекты ближе, чем когда-либо прежде, эффективно удваивая их разрешение без обычных осложнений резкого увеличения энергии света.

Этот метод называется квантовой микроскопией по совпадению (QMC) и был разработан исследователями из Калифорнийского института технологий (Калифорнийский технологический институт) в США, которые говорят, что они особенно хорошо подходят для исследования тканей и биомолекул с целью выявления болезней или изучения их распространения.

Диаграмма квантового экспериментаДиаграмма квантового эксперимента
Схема аппарата квантовой микроскопии. (Калифорнийский технологический институт)

«Сочетание улучшенной скорости, улучшенного отношения контраста к шуму, более надежной защиты от рассеянного света, сверхвысокого разрешения и низкоинтенсивного освещения расширяет возможности QMC в области биовизуализации», исследователи пишут в своей недавно опубликованной статье.

Квантовая запутанность описывает корреляции, существующие между объектами, имеющими общую историю, до момента их наблюдения. Точно так же, как две туфли, купленные в магазине, соотносятся так, чтобы они подходили для правой и левой ноги, частицы также могут быть математически соотнесены различными способами.

Только в квантовой системе такие вещи, как обувь и электроны не останавливайтесь ни на одном из этих состояний, пока их не наблюдаете. Это всего лишь вероятности, которые лучше всего описать как волну вероятностей.

В QMC участвующими частицами были фотоны или частицы света, которые называются бифотонами, если они запутались в паре.

p>

Это было сделано с помощью специального кристалла из β-бората бария (BBO). Когда лазерный свет проходит через кристалл, очень небольшая часть фотонов — всего около одного на миллион — преобразуется в бифотоны. Затем исследователи снова смогли разделить бифотоны с помощью сети зеркал, линз и призм.

Улучшение разрешения микроскопа. (Калифорнийский технологический институт)

Один фотон проходит через изучаемый материал, а другой фотон анализируется. Будучи запутанным, корреляции, измеренные в любом фотоне, также могут что-то сказать о путешествии его партнера. Это основа другой довольно новой технологии, называемой фантомным изображением.

Однако у этого запутанного двойного действия есть еще одна хитрость в рукаве. Бифотоны имеют в два раза больший импульс, чем фотоны, что также означает, что их длины волн уменьшены вдвое. Половина длины волны света, в свою очередь, означает более высокое разрешение для светового микроскопа.

Обычно свет с более короткими длинами волн также несет больше энергии, что в определенный момент может повредить изучаемые клетки. Подумайте о разнице между безвредными длинными радиоволнами и более мощными короткими ультрафиолетовыми (УФ) лучами, которые могут разрушить ДНК и вызвать солнечные ожоги.

В этом случае процесс запутывания эффективно сокращает вдвое Длина волны не увеличивает энергию отдельных фотонов.

«Клеткам не нравится ультрафиолетовый свет», — говорит инженер-медик Лихонг Ван из Калифорнийского технологического института (Калифорнийский технологический институт). «Но если мы сможем использовать 400-нанометровый свет для изображения клетки и добиться эффекта 200-нм света, то есть УФ, клетки будут счастливы, и мы получим разрешение УФ».

В этой системе также есть возможности для улучшения, в том числе для ускорения визуализации и возможности связывания большего количества фотонов вместе, что еще больше увеличивает разрешение. Однако добавление большего количества фотонов означает, что вероятность возникновения запутанности — уже одна на миллион — снизится еще больше.

Поскольку запутанность легко разрушается при взаимодействии с окружающей средой, увеличение числа фотонов в система увеличивает вероятность того, что отдельные фотоны будут взаимодействовать с окружающей средой, а не друг с другом.

Хотя бифотонное изображение уже опробовалось ранее, исследователи новой установки внесли несколько улучшений на протяжении всего процесса и протестировали его. на практике, что делает его одним из самых многообещающих методов в своем роде.

«Мы разработали то, что, по нашему мнению, является строгой теорией, а также более быстрый и точный метод измерения запутанности», — говорит Ван. «Мы достигли микроскопического разрешения и визуализировали клетки».

Исследование опубликовано в Nature Communications.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Тени Луны могли содержать микробы. Вот почему это беспокойство.

Могут ли микробы выжить в постоянно тенированных регионах (PSR) Луны? Осевой наклон. Это исследование может…

03.04.2025

Звезды тоже получают черви, и «песни» могут рассказать нам свою историю

«Музыка» станородок-огромные вибрации, вызванные разрывами пузырьков газа, которые волнуют по всему телам многих звезд-могут раскрыть…

03.04.2025

Паркер -зонд повторяет щетку с солнцем в Сорвиголова

Солнечный зонд Parker's NASA повторил свои рекордсменные показатели декабря 2024 года, провалившись в рамках ожапывающего…

02.04.2025

«Городской убийца» астероидный удар по-прежнему возможным (только не с землей)

Как раз тогда, когда вы думали, что можете расслабиться о предполагаемом «городском убийце» астероида 2024…

02.04.2025

Огромный 56-мильный разбил частиц возможен, говорит CERN Report

Европа лаборатория CERN заявила в понедельник, что подробный анализ не выявил никаких технических препятствий для…

01.04.2025

Новая «полудействие», наполовину огневая фаза вещества, скрывающаяся в магните

Экзотическое состояние материи было обнаружено, скрывающимся в предыдущем экзотическом состоянии, которое обнаружилось в магнитном соединении…

01.04.2025