Категории: Новости

Световые микроскопы видят меньше, чем когда-либо, используя странный квантовый трюк

Разрешение световых микроскопов значительно возросло благодаря умелому использованию распространенного явления в квантовой физике.

Направляя запутанные световые потоки по разным путям и рекомбинируя их волны, можно наблюдать на деликатные объекты ближе, чем когда-либо прежде, эффективно удваивая их разрешение без обычных осложнений резкого увеличения энергии света.

Этот метод называется квантовой микроскопией по совпадению (QMC) и был разработан исследователями из Калифорнийского института технологий (Калифорнийский технологический институт) в США, которые говорят, что они особенно хорошо подходят для исследования тканей и биомолекул с целью выявления болезней или изучения их распространения.

Схема аппарата квантовой микроскопии. (Калифорнийский технологический институт)

«Сочетание улучшенной скорости, улучшенного отношения контраста к шуму, более надежной защиты от рассеянного света, сверхвысокого разрешения и низкоинтенсивного освещения расширяет возможности QMC в области биовизуализации», исследователи пишут в своей недавно опубликованной статье.

Квантовая запутанность описывает корреляции, существующие между объектами, имеющими общую историю, до момента их наблюдения. Точно так же, как две туфли, купленные в магазине, соотносятся так, чтобы они подходили для правой и левой ноги, частицы также могут быть математически соотнесены различными способами.

Только в квантовой системе такие вещи, как обувь и электроны не останавливайтесь ни на одном из этих состояний, пока их не наблюдаете. Это всего лишь вероятности, которые лучше всего описать как волну вероятностей.

В QMC участвующими частицами были фотоны или частицы света, которые называются бифотонами, если они запутались в паре.

p>

Это было сделано с помощью специального кристалла из β-бората бария (BBO). Когда лазерный свет проходит через кристалл, очень небольшая часть фотонов — всего около одного на миллион — преобразуется в бифотоны. Затем исследователи снова смогли разделить бифотоны с помощью сети зеркал, линз и призм.

Улучшение разрешения микроскопа. (Калифорнийский технологический институт)

Один фотон проходит через изучаемый материал, а другой фотон анализируется. Будучи запутанным, корреляции, измеренные в любом фотоне, также могут что-то сказать о путешествии его партнера. Это основа другой довольно новой технологии, называемой фантомным изображением.

Однако у этого запутанного двойного действия есть еще одна хитрость в рукаве. Бифотоны имеют в два раза больший импульс, чем фотоны, что также означает, что их длины волн уменьшены вдвое. Половина длины волны света, в свою очередь, означает более высокое разрешение для светового микроскопа.

Обычно свет с более короткими длинами волн также несет больше энергии, что в определенный момент может повредить изучаемые клетки. Подумайте о разнице между безвредными длинными радиоволнами и более мощными короткими ультрафиолетовыми (УФ) лучами, которые могут разрушить ДНК и вызвать солнечные ожоги.

В этом случае процесс запутывания эффективно сокращает вдвое Длина волны не увеличивает энергию отдельных фотонов.

«Клеткам не нравится ультрафиолетовый свет», — говорит инженер-медик Лихонг Ван из Калифорнийского технологического института (Калифорнийский технологический институт). «Но если мы сможем использовать 400-нанометровый свет для изображения клетки и добиться эффекта 200-нм света, то есть УФ, клетки будут счастливы, и мы получим разрешение УФ».

В этой системе также есть возможности для улучшения, в том числе для ускорения визуализации и возможности связывания большего количества фотонов вместе, что еще больше увеличивает разрешение. Однако добавление большего количества фотонов означает, что вероятность возникновения запутанности — уже одна на миллион — снизится еще больше.

Поскольку запутанность легко разрушается при взаимодействии с окружающей средой, увеличение числа фотонов в система увеличивает вероятность того, что отдельные фотоны будут взаимодействовать с окружающей средой, а не друг с другом.

Хотя бифотонное изображение уже опробовалось ранее, исследователи новой установки внесли несколько улучшений на протяжении всего процесса и протестировали его. на практике, что делает его одним из самых многообещающих методов в своем роде.

«Мы разработали то, что, по нашему мнению, является строгой теорией, а также более быстрый и точный метод измерения запутанности», — говорит Ван. «Мы достигли микроскопического разрешения и визуализировали клетки».

Исследование опубликовано в Nature Communications.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024

Ученые впервые раскрыли форму короны черной дыры

Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…

19.11.2024

Ученые обнаружили галактики-монстры, скрывающиеся в ранней Вселенной

В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…

19.11.2024