Категории: Новости

Прорывной метод пронзил ионосферу и открыл радиовселенную с потрясающей четкостью

Только что с потрясающей четкостью были обнаружены самые низкие частоты радиоВселенной.

Команда астрономов использовала новую технику калибровки, чтобы дать нам первые четкие изображения радиоВселенной на частоте Диапазон частот 16–30 мегагерц – достижение, которое раньше считалось невозможным из-за турбулентных помех, создаваемых ионосферой Земли.

«Это как впервые надеть очки и больше не видеть размытого изображения». — говорит астроном Кристиан Груневельд из Лейденского университета в Нидерландах, который руководил исследованием.

Наблюдение Вселенной радиоглазами и в лучшие времена представляет собой интересную задачу.

На самом низком уровне Из электромагнитного спектра радиодиапазон состоит из самых длинных волн, а значит, они могут проникать в атмосферу Земли. Однако, поскольку сигналы часто довольно слабые, а длины волн довольно длинные, антенны, с помощью которых мы их обнаруживаем, должны быть довольно большими.

Таким образом, запуск радиотелескопа в космос просто невозможен. экономически эффективные средства изучения радионеба, и большинство радиотелескопов развернуто и работает прямо здесь, на Земле. Но для декаметрового диапазона частот, ниже 30 мегагерц, это означает, что мы не смогли увидеть то, что там находится, в мельчайших деталях.

Это из-за ионосферы, которая так рассеивает низкочастотные радиоволны. по сути, они приходят сильно коррумпированными. Переменное количество электронов в ионосфере вызывает переменные задержки фазы низкочастотного волнового фронта; а взаимодействия между электронами и магнитными полями в ионосфере могут вызывать вращение радиоволн. В результате изображения получаются очень размытыми и расфокусированными.

Это была проблема с тех пор, как существует радиоастрономия. Но еще в 2004 году астрономы предсказывали, что мы сможем добиться гораздо лучшего разрешения с помощью таких проектов, как LOFAR, массив радиотелескопов, который в то время еще не был построен.

LOFAR сейчас является крупнейшим радиотелескоп в мире, видящий Вселенную на самых низких частотах, которые мы можем видеть с Земли. Но ионосфера остается все той же старой проблемой, поэтому Гроенвельд и его коллеги искали способ исправить ее влияние.

Изображение низкочастотного радионеба, полученное с помощью новой методики калибровки. (LOFAR/Groeneveld et al.)

Их стратегия калибровки работает аналогично адаптивной оптике, которая использует опорную звезду, чтобы помочь оптическим телескопам корректировать эффекты атмосферных искажений. Исследователи использовали сами радиоисточники в качестве калибровочных мишеней, чувствительность и разрешение которых на порядок превышают предыдущие декаметровые наблюдения.

Техника не соответствует действительности. идеально – на новом изображении вокруг радиоисточников расходятся линии; это связано с тем, что из-за ионосферы создается впечатление, что источник движется. Калибровка позволила определить источник с большей точностью, но некоторые артефакты ионосферного влияния остались. Это то, что можно уточнить в дальнейшей работе.

Однако на данный момент усилия команды демонстрируют степень точности, которая раскрывает детали, которые мы никогда раньше не видели. Высокочастотное и низкочастотное радиоизлучение создается разными процессами и объектами; изучение скоплений галактик, которые мы раньше видели только в высокочастотных радиоволнах, показало, что излучение распределено неравномерно, а имеет своего рода пятнистую структуру.

Вспышки очень далеких черных дыр также производят низкочастотные излучения. частоты радиоволн, поэтому новый метод означает, что у астрономов есть гораздо лучший инструмент для понимания аккреции черных дыр в ранней Вселенной.

Однако на данный момент мы знаем, что этот метод работает. Исследователи усердно работают над обработкой дополнительных данных, надеясь в конечном итоге составить карту всего декаметрового северного неба. И, как отмечает Гроенвельд, «конечно, есть шанс, что мы в конце концов обнаружим что-то неожиданное».

Да, пожалуйста.

Исследование опубликовано в Природная астрономия.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Ферментирование мисо в космосе придает ему уникальный вкус, исследования на основе исследования

Есть что-то в космической среде, которое меняет вкус мисо интересными и тонкими способами. Single/MREC-> "Ферментация…

08.04.2025

Терраформинг Марс не невозможно. Новое исследование описывает первый шаг.

Terraforming Mars был долгосрочной мечтой энтузиастов колонизации на протяжении десятилетий. Но когда вы начинаете бороться…

08.04.2025

Тардиграды раскрывают секрет переживания крайностей пространства

Конференция по лунной и планетарной науке 2025 года, которая состоялась с 10–14 марта в The…

07.04.2025

Редкая звезда обречена на взрыв, наконец, подтверждает астрономический прогноз

Каждая звезда, которая висит на вечернем небосводе, однажды умирает, его огни заносят огни, и его…

07.04.2025

Новый космический телескоп НАСА раскрывает свои первые изображения

Spherex означает спектро-фотометр для истории вселенной, эпохи реонизации и исследователя ICES. Это их новый инфракрасный…

06.04.2025

Новое открытие Quark раскрывает критический подсказку о рождении вселенной

Пара верхних кварков была обнаружена в детрите, распыляющемся из-за столкновения двух атомов свинца. Обнаружение укрепляет…

05.04.2025