Категории: Новости

Новый подход к машинному обучению может сделать хаос более предсказуемым

Большие возможности систем искусственного интеллекта по обработке чисел означают, что мы можем лучше предсказывать будущее хаотических систем на основе все меньшего и меньшего количества шаблонов прошлого, а новый алгоритм делает этот процесс еще более точным.

Разработанный с помощью методов вычисления резервуаров следующего поколения, использующих более динамичный и быстрый подход к машинному обучению, новый алгоритм улучшает прогнозирование сложных физических процессов, таких как глобальный прогноз погоды.

Эти расчеты процессы, известные как пространственно-временные хаотические системы, теперь могут выполняться за долю времени, с большей точностью, с использованием меньшего количества вычислительных ресурсов и на основе меньшего количества обучающих данных.

«Это очень интересно, поскольку мы считают, что это существенный прогресс с точки зрения эффективности обработки данных и точности прогнозирования в области машинного обучения», – – говорит физик Вендсон де са Барбоса из Университета штата Огайо.

Машинное обучение – это именно то, что: компьютерные алгоритмы используют процесс обнаружения для прогнозирования (например, будущих погодных условий) на основе больших архивов данных (например, прошлых погодных условий).

Подход с использованием резервуарных вычислений пытается более точно имитировать человеческий мозг, вводя информацию в «резервуар» случайно связанных искусственных нейронов как средство обнаружения полезных закономерностей. Затем результаты используются для информирования будущих циклов обучения.

Со временем эти системы стали более рациональными и эффективными. Одно из нововведений в машинном обучении позволило использовать разные компоненты прогностической модели параллельно. Использование такой архитектуры в сочетании с новейшей технологией вычислений резервуаров позволяет алгоритмам выявлять потенциальные симметрии в том, что в противном случае представляло бы собой хаотичную массу информации.

Исследователи проверили свой новый подход на модели погоды в атмосфере. Используя обычный ноутбук с программным обеспечением Windows, они смогли делать прогнозы за доли секунды, для чего раньше требовался суперкомпьютер. В данном конкретном случае расчеты были произведены в 240 000 раз быстрее, чем с помощью традиционных алгоритмов.

«Если знать уравнения, точно описывающие, как будут развиваться эти уникальные для системы процессы, то ее поведение можно было бы воспроизвести и предсказаны», – говорит де са Барбоза.

Алгоритмы машинного обучения можно использовать для прогнозирования всех видов будущих событий, находя применение как в таких обыденных областях, как добыча новых ресурсов, так и в таких тревожных, как социальная инженерия».

По мере того, как эти сценарии становятся все более сложными, необходимо учитывать все больше и больше переменных, что расширяет пределы вычислительных ресурсов. Системы машинного обучения способны обнаруживать закономерности в прошлых данных, которые человеческий глаз не мог бы обнаружить, а затем следить за повторением этих закономерностей. Они также могут получать информацию о себе, чтобы со временем повышать свою точность.

По мнению исследователей, в будущем эти новые и улучшенные алгоритмы можно будет использовать в самых разных ситуациях, например, для мониторинга закономерностей. сердцебиения, выявляя проблемы со здоровьем, которые в противном случае были бы упущены.

«Современные алгоритмы машинного обучения особенно хорошо подходят для прогнозирования динамических систем путем изучения их основных физических правил с использованием исторических данных», — говорит де са Барбоза.

«Когда у вас будет достаточно данных и вычислительной мощности, вы сможете делать прогнозы с помощью моделей машинного обучения для любой реальной сложной системы».

Исследование опубликовано в Chaos: An Междисциплинарный журнал нелинейной науки.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Амбициозное исследование намекает на появление новых теорий темной энергии

Астрофизики как никогда близки к разгадке тайны того, что составляет почти 70 процентов Вселенной.Теперь опубликован…

28.01.2026

Если астероид упадет на Луну в 2032 году, последствия могут достичь Земли

В каждой ситуации есть светлая сторона. В 2032 году сама Луна может иметь особенно яркую…

28.01.2026

Микробы в космосе мутировали и развили замечательную способность

Коробка, полная вирусов и бактерий, завершила свой обратный путь на Международную космическую станцию, и изменения,…

27.01.2026

Светящийся железный слиток преследует туманность Кольцо – и никто не знает, почему

Мы знали о знаменитой туманности Кольцо уже почти 250 лет, но только сейчас астрономы обнаружили…

26.01.2026

Горячий черный лед может быть ответственен за дикий магнетизм Нептуна

Внутри ядер ледяных планет-гигантов давление и температура настолько экстремальны, что находящаяся там вода переходит в…

26.01.2026

Момент, которого мы так ждали: JWST приближается к «Глу Саурона»

Мы знаем, что произойдет с Солнцем и нашей Солнечной системой, потому что мы можем заглянуть…

24.01.2026