Категории: Новости

Физики только что синтезировали кристаллы материала, который, как мы думаем, находится в ядре Земли

Используя наковальню из алмаза, физики успешно сжали железо до той формы, которую, как мы думаем, оно имеет глубоко в центре Земли.

Он называется гексаферрум, или эпсилон-железо (ϵ-Fe), и он стабилен только при очень высоких давлениях. Ученые считают, что большая часть железа в ядре Земли принимает эту форму, и детальное понимание его свойств может помочь нам понять, почему структура самой центральной части нашей планеты, по-видимому, имеет направленные вариации текстуры — свойство, известное как анизотропия.

В этом стремлении понять ядро ​​Земли есть только одна проблема. Здесь, на поверхности, в хорошем режиме с относительно низким атмосферным давлением, трудно воспроизвести условия в ядре. Но мы можем создать условия высокого давления в течение коротких импульсов времени, используя алмазные наковальни и тепло.

«Здесь мы сообщаем о синтезе монокристаллов ϵ-Fe в ячейках с алмазными наковальнями и последующем измерении монокристаллического константы упругости этой фазы до 32 ГПа при 300 Кельвинах с неупругим рассеянием рентгеновских лучей», — пишут группа под руководством физика Аньес Деваэле из Университета Париж-Сакле во Франции.

Задача заключалась в преобразовании фаза атмосферного давления железа, называемая ферритом или альфа-железом. Обычно, когда к ферриту прикладывают высокое давление в попытке раздробить его на гексаферрум, он распадается на мельчайшие кристаллы, непригодные для детального анализа, что сводит на нет усилия по изучению его упругих свойств.

Так, Деваэле и др. ее коллеги подошли к проблеме поэтапно. Они поместили кристаллы феррита в алмазную наковальню в вакуумный нагреватель и увеличили давление до 7 гигапаскалей (что примерно в 70 000 раз превышает атмосферное давление на уровне моря) и температуру до 800 кельвинов (527 градусов по Цельсию, или 980 по Фаренгейту). /p>

Это привело к образованию промежуточной фазы железа, которая возникает при высоких температурах в атмосферных условиях, называемой аустенитом или гамма-железом. Структура аустенита отличается от структуры феррита, и кристаллы аустенита, полученные командой, гораздо более плавно превращались в фазу гексаферра при давлении от 15 до 33 гигапаскалей при температуре 300 Кельвинов.

Затем они использовали синхротронный луч на Европейский центр синхротронного излучения для исследования гексаферрума и анализа его свойств.

Схема, иллюстрирующая сжатие железа в алмазной наковальне для получения гексаферрума. (APS/C. Cain; S. Deemyad/University of Utah)

То, что мы знаем о земном ядре, в значительной степени реконструировано на основе сейсмических данных. Акустические волны, создаваемые планетарными толчками, по-разному распространяются через разные материалы; вот откуда мы знаем, что ядро ​​Земли многослойно, как челюсть.

Но для более детального понимания нам нужно знать, что на самом деле представляет собой материал в ядре и как он реагирует на акустические волны. Работа Деваэле и ее команды показала, что эластичность гексаферрума зависит от направления; волны распространяются быстрее вдоль одной конкретной оси.

Эта анизотропия сохраняется и при изменении давления, что говорит о том, что гексаферрум также ведет себя в среде внутреннего ядра с давлением до 360 гигапаскалей. Это согласуется с наблюдениями за тем, как сейсмические волны распространяются по планете.

Выводы показывают, что методы команды могут стать отличным инструментом для понимания экстремальных условий в центре нашего мира.

Исследование опубликовано в журнале Physical Review Letters.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024

Ученые впервые раскрыли форму короны черной дыры

Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…

19.11.2024

Ученые обнаружили галактики-монстры, скрывающиеся в ранней Вселенной

В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…

19.11.2024