Математика десятилетней давности может, наконец, объяснить некоторые особенности «чудаков» материи: зернистых материалов, которые иногда ведут себя как твердое тело, а иногда текут как жидкость.
Как ни странно это звучит, но просто подумайте о песке в песочных часах по сравнению с песком на пляже. Медленно лья через сужение, песок – или рис, или кофе – будет течь свободно. Направляйте тот же материал достаточно быстро или надавливайте на него с силой, его частицы обычно застревают, переходя из жидкого состояния в твердое.
Чтобы избежать внезапных закупорок там, где желателен мягкий поток, нам необходимо понять, как и когда происходит этот внезапный сдвиг. Двое американских физиков теперь думают, что нашли способ описать поведение гранулированных материалов вблизи этой «точки застревания».
«Тенденция текущего зернистого вещества «застревать» и переставать течь в точке низкая плотность — это практическая проблема, которая ограничивает скорость потока при промышленном использовании гранулированных материалов», — объясняют в своей опубликованной статье Онуттом Нараян из Калифорнийского университета и Харш Матур из Университета Кейс Вестерн Резерв в Огайо.
Эта проблема становится все более сложной, если учесть, что она затрагивает различные материалы в таких разных отраслях, как сельское хозяйство, фармацевтика и строительство. Мы говорим о прессовании гранул в гранулы для изготовления таблеток, переработке зерновых и, в гражданском строительстве, о прогнозировании поведения различных отложений, в которых могут быть закреплены наши здания.
Для своего моделирования Нараян и Матур использовали числовые данные. другие исследователи собрали их, изучая в лаборатории пакеты полистироловых шариков, не подверженных трению. Пара сравнила свои модели бусинок, приближающихся к точке застревания, с предсказаниями раздела математики, развитого в 1950-х годах так называемая теория случайных матриц.
В частности, Нараян и Матур изучали вибрации внутри пакетов с шариками. Хотя это варьируется от партии к партии, бусины вибрируют на определенных частотах, создавая «спектр» вибрационных частот.
Иными словами, гранулированный материал позволяет распространяться через него только определенным вибрационным частотам – свойство, которое физики называют плотностью состояний системы.
Другие исследователи пытались изучить, как распределение этих колебательных состояний развивается в гранулированных материалах вблизи точки застревания, где частицы сталкиваются друг с другом, прежде чем застрять.
Эта проблема поддается использованию теории случайных матриц, которую можно использовать для описания физических систем со многими случайными величинами. Но без сравнения расчетов с численными данными самих шариков более ранние исследования не смогли различить различные «разновидности» теории случайных матриц, которые могли бы объяснить вибрации в гранулированных материалах.
Там, где эти исследователи потерпели неудачу, Нараян и Матур добились успеха: их сравнение численного моделирования и теоретических предсказаний показало специфическое распределение статистических вероятностей, известное как ансамбль Уишарта-Лагерра, «правильно воспроизводит универсальные статистические свойства застрявшего гранулированного вещества».
Важное наблюдение, говорят они. , осознал, что когда бусинки сталкиваются друг с другом, они сжимаются и отскакивают, как пружина, так что легкий контакт двух бусинок приводит к возникновению довольно больших сил.
Более того, пара также разработала модель, которая удалось описать свойства шариков вблизи точки защемления и вдали от нее, когда сыпучие материалы неподвижны.
«То, что одна и та же модель способна воспроизводить как статические, так и вибрационные свойства Гранулярное вещество предполагает, что оно может быть более широко применимо для обеспечения единого понимания физики зернистого вещества», — заключают Нараян и Матур.
Исследование было опубликовано в Европейском физическом журнале E. эм>
Попытка понять сложность мозга немного похожа на попытку понять обширность пространства-она выходит далеко за рамки…
Ученые, пытающиеся обнаружить неуловимую массу нейтрино, крошечные «призрачные частицы», которые могли бы решить некоторые из…
Новые наблюдения показали, что мы ошибались по поводу продолжительности дня на Уране. Это на 28…
1 апреля 2025 года тайваньский производитель TSMC представил наиболее продвинутую в мире микрочип: 2 нанометра…
Контейнер с маслом и водой, разделенный тонкой кожей намагниченных частиц, заинтриговал команду химических инженеров, принимая…
Когда астероид 2024 год впервые показал себя людям 27 декабря 2024 года, он, казалось, только…