Нажатие переключателя на любом электрическом устройстве запускает марширующий оркестр заряженных частиц, движущихся в такт напряжению цепи.
Но новое открытие в экзотических материалах, известных как странные металлы, обнаружило, что электричество не работает. не всегда идут в ногу и даже иногда могут истекать кровью, что заставляет физиков подвергать сомнению то, что мы знаем о природе частиц.
Исследование проводилось на нанопроволоках, изготовленных из точного баланса иттербия. , родий и кремний (YbRh2Si2).
Проведя серию экспериментов по квантовым измерениям на этих нанопроволоках, исследователи из США и Австрия обнаружили доказательства, которые могут помочь разрешить спор о природе электрических токов в металлах, которые ведут себя нетрадиционным образом.
Обнаружено в конце прошлого века в классе соединений на основе меди, известных не обладая сопротивлением току при относительно высоких температурах, странные металлы при нагревании становятся более устойчивыми к электричеству, как и любой другой металл.
Только делают они это довольно странным образом, увеличивая сопротивление на заданное значение для каждого градуса повышения температуры.
В обычных металлах сопротивление варьируется в зависимости от температуры и выходит на плато, как только материал становится достаточно горячим.
Такой контраст в правилах сопротивления предполагает токи в странных металлах действуют по-другому. По какой-то причине способ, которым несущие заряд частицы в странных металлах взаимодействуют с толканием окружающих частиц, отличается от слалома электронов в обычной полоске провода.
То, что мы можем представить как поток отрицательного -Заряженные сферы, катящиеся по трубке из атомов меди, немного сложнее. В конце концов, электричество — это квантовое явление, характеристики которого согласованы между собой и ведут себя как отдельные единицы, известные как квазичастицы.
Выясняется, объясняют ли одни и те же виды квазичастиц необычное поведение сопротивления странных металлов. вопрос открытый, поскольку некоторые теории и эксперименты предполагают, что такие квазичастицы могут потерять свою целостность при определенных обстоятельствах.
Чтобы выяснить, существует ли устойчивое движение квазичастиц в потоке электронов в странных металлах, исследователи сделали использование явления, называемого дробовым шумом.
Если бы вы могли замедлить время до ползания, фотоны света, излучаемые даже самым точным лазером, взрывались бы и распылялись со всей предсказуемостью шипящего бекона. Этот «шум» является характеристикой квантовой вероятности и может служить мерой детализации зарядов при их прохождении через проводник.
«Идея состоит в том, что если я провожу ток, он состоит группы дискретных носителей заряда, — говорит старший автор Дуг Нательсон, физик из Университета Райса в США.
— Они достигают средней скорости, но иногда они оказываются ближе друг к другу во времени, а иногда они находятся дальше друг от друга».
Команда обнаружила, что в их сверхтонком образце YbRh2Si2 был очень высокий дробовой шум. подавляется способами, которые невозможно объяснить типичными взаимодействиями между электронами и их окружением, что позволяет предположить, что квазичастицы, вероятно, не участвовали в этой игре.
Вместо этого заряд был более жидким, чем токи в обычных металлах, и это открытие подтверждает модель, предложенная более 20 лет назад автором Цимяо Си, физиком конденсированного состояния из Университета Райса.
Теория Си о материалах, температура которых приближается к нулю градусов, описывает, как электроны в определенных местах больше не имеют общих характеристик, которые могли бы позволяют им образовывать квазичастицы.
Хотя обычное поведение квазичастиц можно предварительно исключить, команда не совсем уверена в том, какую форму принимает этот «жидкий» ток, и даже можно ли его обнаружить в других странных формах. рецепты металлов.
«Может быть, это свидетельство того, что квазичастицы не являются четко определенными вещами или что их просто нет, и заряд движется более сложным образом. Нам нужно найти правильный словарный запас, чтобы говорить о том, как заряд может перемещаться коллективно», — говорит Нательсон.
Это исследование было опубликовано в журнале Science.
Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…
В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…
Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…
В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…
Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…
В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…