Новости

В симметричном кристалле обнаружен неизученный магнитоэлектрический эффект

Магнетизм и электричество связаны между собой множеством научных способов, включая магнитоэлектрический эффект. Эффект проявляется в некоторых кристаллах, когда на электрические свойства кристалла может влиять магнитное поле, и наоборот.

Теперь все стало еще более странным, потому что ученые открыли совершенно новый магнитоэлектрический эффект в симметричном кристалле — и он невозможен.

Эффект был обнаружен в кристалле особого типа, называемом лангаситом, который состоит из лантана, галлия, кремния и кислорода, а также атомов гольмия.

Важно отметить, что этот конкретный кристалл имеет симметричную структуру, которая, как считается, исключает возможность связи между магнетизмом и электричеством.

«Связаны ли электрические и магнитные свойства кристалла или нет, зависит от внутренней симметрии кристалла», — говорит физик Андрей Пименов из Венского технологического университета (TU Wien) в Австрии.

«Если кристалл обладает высокой степенью симметрии, например, если одна сторона кристалла является в точности зеркальным отображением другой стороны, то по теоретическим причинам магнитоэлектрического эффекта быть не может».

В данном случае все было по-другому: симметричный кристалл не только произвел магнитоэлектрический эффект, это был тип эффекта, невиданного ранее.

Ученые говорят, что в то время как симметрия сохранялась в геометрическом смысле, магнетизм атомов гольмия нарушил симметрию, создав эффект, который перешел в область квантовой физики.

Этот разрыв означал, что поляризация возможна, когда положительные и отрицательные заряды в кристалле слегка смещаются.

Это легко сделать с помощью электрического поля, но с лангаситом это можно было бы сделать и с помощью магнитного поля, и ключевым моментом оказалась сила магнитного поля.

«Кристаллическая структура настолько симметрична, что фактически не должна допускать какого-либо магнитоэлектрического эффекта», — говорит Пименов. «А в случае слабых магнитных полей действительно нет никакой связи с электрическими свойствами кристалла».

«Но если мы увеличим силу магнитного поля, произойдет нечто удивительное: атомы гольмия изменят свое квантовое состояние и приобретут магнитный момент. Это нарушит внутреннюю симметрию кристалла».

В то время как лангасит показал линейную зависимость между поляризацией и напряженностью магнитного поля, что является нормальным явлением, связь между поляризацией и направлением магнитного поля вовсе не была нормальной — она ​​была сильно нелинейной.

Это совершенно новый аспект, что даже небольшое изменение вращения магнитного поля может вызвать большое изменение эффекта электрической поляризации.

Следующий шаг для исследователей — посмотреть, работает ли этот недавно открытый эффект и в обратном направлении, изменяя магнитные свойства электрическим полем.

Это может показаться сложной физикой — и это так, — но существуют реальные приложения с точки зрения сохранения и хранения компьютерных данных. Магнитоэлектрический эффект также важен для различных типов сенсорных технологий.

«В магнитных запоминающих устройствах, таких как жесткие диски компьютеров, сегодня необходимы магнитные поля, — говорит Пименов.

«Они генерируются с помощью магнитных катушек, что требует относительно большого количества энергии и времени. Если бы существовал прямой способ переключать магнитные свойства твердотельной памяти с помощью электрического поля, это было бы прорывом».

Исследование опубликовано в журнале NPJ Quantum Materials.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024

Ученые впервые раскрыли форму короны черной дыры

Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…

19.11.2024

Ученые обнаружили галактики-монстры, скрывающиеся в ранней Вселенной

В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…

19.11.2024