Юпитер, покрытый хаотичными облаками и бушующий дикими ветрами, известен и любим своей великолепно бурной атмосферой. С тех пор, как космический зонд Juno прибыл туда в 2016 году, ученые получили беспрецедентный доступ, который помог понять, что движет безумной погодой газового гиганта.
Но Juno предоставил не только ответы, но и множество вопросов. До миссии нам не удавалось хорошо рассмотреть полюса Юпитера. Космический зонд увидел потрясающую картину: многоугольные формы штормов на севере и юге, окружающие шторм в центре.
На северном полюсе Юпитера бушуют девять циклонов, один в центре, и восемь других, аккуратно выстроенных вокруг него, все вращаются против часовой стрелки.
На южном полюсе в 2016 году Juno заметила шесть штормов, один в центре и пять вокруг него. Седьмой шторм присоединился к ним где-то в 2019 году, так что теперь есть шесть вихрей шестиугольной формы, окружающих центральный шторм. Все эти южные штормы вращаются по часовой стрелке.
С 2016 года эти огромные штормы — сравнимые по размеру с континентальной частью Соединенных Штатов — продолжаются без слияния. И теперь, как изложено в новой статье, мы можем понять, почему.
Расположение Юпитера не похоже на другой газовый гигант Солнечной системы, Сатурн, на котором бушует по одной огромной буре на каждом из полюсов. И не похоже на процессы на Земле — на нашей планете большинство циклонов формируются в тропических широтах и дрейфуют к полюсам, но они рассеиваются над сушей и зонами холодного океана, прежде чем попасть туда.
Поскольку у Юпитера нет ни суши, ни холодных океанов, имеет смысл, что его штормы будут вести себя иначе, чем на Земле, но остается вопрос — почему они не сливаются, создавая одиночные штормы, похожие на Сатурн?
Астроном Ченг Ли из Калифорнийского университета в Беркли и его коллеги из Калифорнийского технологического института провели численное моделирование конфигураций штормов и обнаружили набор условий, при которых штормы могут оставаться дискретными и стабильными в течение длительных периодов времени, не сливаясь в мегаполисы.
«Мы обнаружили, что стабильность структуры в основном зависит от защиты — антициклонического кольца вокруг каждого циклона — но также и от глубины», — написали исследователи в своей статье.
«Слишком слабое экранирование и малая глубина приводят к слиянию и потере многоугольного рисунка. Слишком сильное экранирование заставляет циклонические и антициклонические части вихрей разлетаться. Между ними существуют стабильные многоугольники».
Команда использовала уравнения, описывающие движение одного слоя жидкости на сфере, и смоделировала многоугольное расположение вихрей. Это не новость, но команда добавила в свои модели полярную геометрию и бета-дрейф — тенденцию циклонов дрейфовать из-за увеличения силы Кориолиса с широтой из-за скорости ветра — в свои модели для более детального понимания динамики на Юпитере.
Команде еще предстоит протестировать свои модели на реальных данных Juno.
Исследование опубликовано в Proceedings of the National Academy of Sciences.
Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…
В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…
Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…
В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…
Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…
В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…