Запишите это в графу «Этого не должно было случиться!»: ученые наблюдали заживление металла, чего никогда раньше не видели. Если бы этот процесс можно было полностью понять и контролировать, мы могли бы оказаться в начале совершенно новой эры инженерии.
Команда из Sandia National Laboratories и Техасского университета A&M проверяла упругость металла, используя специальную технику просвечивающего электронного микроскопа, чтобы тянуть концы металла 200 раз в секунду. Затем они наблюдали самовосстановление в сверхмалых масштабах в куске платины толщиной 40 нанометров, подвешенном в вакууме.
Трещины, вызванные описанным выше напряжением, известны как усталостные повреждения: повторяющиеся напряжения и движения, которые вызывают микроскопические разрывы, в конечном итоге приводящие к поломке машин или конструкций. Удивительно, но примерно через 40 минут наблюдения трещина в платине начала снова срастаться и срастаться, прежде чем снова начать двигаться в другом направлении.
«Это было совершенно ошеломляюще — наблюдать из первых рук», — говорит материаловед Брэд Бойс из Sandia National Laboratories. «Конечно, мы этого не искали».
«Мы подтвердили, что металлы обладают собственной внутренней, естественной способностью к самовосстановлению, по крайней мере, в случае усталостного повреждения на наноуровне».
Это точные условия, и мы пока точно не знаем, как это происходит и как мы можем это использовать. Однако, если вы подумаете о затратах и усилиях, необходимых для ремонта всего, от мостов до двигателей и телефонов, невозможно сказать, насколько большую разницу могут иметь самовосстанавливающиеся металлы.
И хотя наблюдение беспрецедентно, оно не является полностью неожиданным. В 2013 году материаловед из Техасского университета A&M Майкл Демкович работал над исследованием, в котором предсказывалось, что такое заживление нанотрещин может происходить из-за того, что крошечные кристаллические зерна внутри металлов существенно смещают свои границы в ответ на нагрузку.
Демкович также работал над этим последним исследованием, используя обновленные компьютерные модели, чтобы показать, что его теории десятилетней давности о самовосстановлении металлов в наномасштабе соответствуют тому, что происходит здесь.
Что процесс автоматического исправления произошел в Комнатная температура является еще одним многообещающим аспектом исследования. Металлу обычно требуется много тепла, чтобы изменить свою форму, но эксперимент проводился в вакууме; еще неизвестно, произойдет ли тот же процесс в обычных металлах в типичной среде.
Возможное объяснение включает процесс, известный как холодная сварка, который происходит при температуре окружающей среды всякий раз, когда металлические поверхности сближаются достаточно близко друг к другу, чтобы их соответствующие атомы спутались вместе. Как правило, процессу мешают тонкие слои воздуха или загрязнителей; в таких средах, как космический вакуум, чистые металлы могут располагаться достаточно близко друг к другу, чтобы буквально слипаться.
«Я надеюсь, что это открытие побудит исследователей материалов задуматься о том, что при определенных обстоятельствах материалы могут делать то, чего мы никогда не ожидали», — говорит Демкович.
Исследование опубликовано в журнале Nature.
Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…
В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…
Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…
В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…
Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…
В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…