Сверхмаленький, очень точный эксперимент в сверххолодной физике выявил совершенно новое квантовое состояние, называемое спинароном.
Оно возникает в чрезвычайно холодных условиях, когда атом кобальта на поверхности меди подвергается воздействию сильного магнитного поля, в результате чего направление его вращения меняется взад и вперед.
Это открытие может спровоцировать серьезное переосмысление предположений о том, как ведут себя низкотемпературные проводящие материалы, по мнению физиков из Института Юлия Максимилиана. Университет Вюрцбурга (JMU) и Исследовательский центр Юлиха в Германии.
Исследователям удалось увидеть магнитный спин атома кобальта в экспериментальной установке благодаря сочетанию интенсивного магнитного поля и железа. наконечник добавлен к их сканирующему туннельному микроскопу атомного масштаба.
Этот спин не был жестким, а скорее постоянно переключался взад и вперед, что затем возбуждало электроны на медной поверхности. Если использовать аналогию, очень полезную в физике высокого уровня, атом кобальта подобен вращающемуся мячу для регби.
«Когда мяч для регби непрерывно вращается в яме для мячей, окружающие мячи смещаются волной. -подобным образом, — говорит физик-экспериментатор Маттиас Боде из JMU.
Это именно то, что мы наблюдали – электроны меди начали колебаться в ответ и соединились с атомом кобальта».
ранее были предсказаны новые наблюдения, которые бросают вызов существующим представлениям о так называемом эффекте Кондо: любопытном нижнем пределе электрического сопротивления, когда магнитные примеси присутствуют в холодных материалах.
В этих новых экспериментах атом кобальта остается находится в постоянном движении, сохраняя свой магнетизм даже при взаимодействии с электронами. Однако согласно правилам эффекта Кондо магнитный момент нейтрализуется взаимодействием электронов.
С 1960-х годов ученые использовали эффект Кондо для объяснения определенных типов квантовой активности, когда металлы, такие как кобальт, и медь сочетаются. Теперь, возможно, некоторые из этих давних представлений придется изменить – и исследователи ищут другие сценарии, в которых спинароны могли бы применяться вместо эффекта Кондо.
«Мы подозреваем, что многие на самом деле могут описывать спинаронного эффекта», — говорит физик-экспериментатор Артем Одобеско из JMU, добавляя: «Если это так, мы перепишем историю теоретической квантовой физики».
Квантовая физика может быть трудной для понимания, но каждый Подобный прорыв приводит ученых к лучшему пониманию того, как материалы и силы, действующие на них, работают вместе на атомном уровне.
И сами исследователи признают противоречие между совершением такого важного открытия в высокоточной и экстремальной лаборатории. условиях – и, тем не менее, на самом деле не имеет никакого немедленного практического применения.
«Наше открытие важно для понимания физики магнитных моментов на металлических поверхностях», — говорит Боде. «Хотя эффект корреляции является переломным моментом в фундаментальных исследованиях, направленных на понимание поведения материи, я не могу добиться от него реального переключения».
Результат исследования был опубликован в журнале Nature Physics.
Супермассивная черная дыра, 300 миллионов легких лет, на расстоянии астрофизиков в тупике. -> Это само…
Попытка понять сложность мозга немного похожа на попытку понять обширность пространства-она выходит далеко за рамки…
Ученые, пытающиеся обнаружить неуловимую массу нейтрино, крошечные «призрачные частицы», которые могли бы решить некоторые из…
Новые наблюдения показали, что мы ошибались по поводу продолжительности дня на Уране. Это на 28…
1 апреля 2025 года тайваньский производитель TSMC представил наиболее продвинутую в мире микрочип: 2 нанометра…
Контейнер с маслом и водой, разделенный тонкой кожей намагниченных частиц, заинтриговал команду химических инженеров, принимая…