Категории: Новости

Форма под названием «Сфинкс» может объяснить ручность в биологии

От спирали цепи ДНК до расположения строительных блоков белка, изгибы и водовороты биохимии часто следуют удивительно последовательной ориентации лево- и праворукости knпринадлежит к хиральности.

Недавнее исследование, включающее мозаику простой формы на основе треугольников, может помочь нам лучше понять, почему биология отдает предпочтение одной ориентации над другой. p>

Исследование, проведенное небольшой группой исследователей из США и Германии, показывает, как сочетание геометрии и фундаментальной физики может лежать в основе некоторых из самых интригующих закономерностей жизни.

«Вселенная должна «Я не предпочитаю одну руку другой, но масштаб за масштабом появляются хиральные предпочтения», — говорит биофизик Chan Zuckerberg Biohub Грег Хубер. «Хиральность может быть очень загадочной».

Подобно тому, как наши две руки держат ладони вверх, зеркальная версия хиральных молекул не может быть идеально выровнена друг относительно друга, независимо от того, как они вращаются. Таким образом, хотя левые и правые молекулы выглядят почти одинаково, они могут оказывать совершенно разное влияние на реальный мир. Например, использование перевернутой версии молекулы в лекарстве может принести больше вреда, чем пользы.

Не только органические молекулы могут иметь ориентацию. Минералы могут быть хиральными при структурировании в биологических системах. Спиралевидный панцирь карбоната кальция улитки и минералы в наших костях — это всего лишь два примера.

Но то, как эти минералы атом за атомом образуют кристаллические хиральные формы, — это просто еще одна диковинка хиральности.

Чтобы лучше понять возникновение киральности, особенно в густонаселенном пространстве биологической системы, Хубер и его коллеги обратились к самой простой двумерной хиральной форме, полученной из серии треугольников: асимметричной форме, прозванной сфинксом.

Форма сфинкса — это наименьшая хиральная форма, которую можно сформировать из треугольников. (Huber et al., Physical Review Research, 2024)

Хубер и его команда использовали компьютерные модели для проверки левой — и правосторонность выравнивания плиток сфинкса, мозаичное расположение их в разном количестве и ориентации. Как объясняют исследователи в своей статье, они хотели «исследовать статистическую механику и выявить киральную природу, присущую ансамблям плотно упакованных киральных плиток, подчиненных конечным пространственным границам».

Будучи асимметричными, Плитки сфинкса могут сочетаться друг с другом по-разному, по сравнению с чем-то простым, например, квадратом. Например, всего две плитки сфинксов можно объединить более чем 45 различными способами, образуя пару, тогда как два квадрата могут сочетаться только в одном направлении.

По мере увеличения количества сфинксов в узоре они комбинируются суперэкспоненциальным образом, предоставляя исследователям доступ к большой, теоретически случайной системе для работы.

Хубер и его коллеги смоделировали взаимодействия между хиральными сфинксами в условиях высокой и низкой энергии, сродни температуре. В высокотемпературных системах у хиральных сфинксов почти не было возможности взаимодействовать, поскольку они толкались на месте и в конечном итоге образовывали беспорядочный узор.

В условиях низкого энергопотребления (слева) плитки сфинксов показывают кластеризацию правого (красного) и левого (синего) хиральные формы которые перемешаны под high- энергетические условия (справа). (Huber et al., Physical Review Research, 2024)

По мере понижения температуры взаимодействия становились более упорядоченными, и сфинксы одинаковой киральности собирались вместе, образуя кластеры, которые вы можете видеть на диаграмме выше.

Однако удивительно, что в высокотемпературных системах, ограниченных симметричной внешней границей, – как в переполненной комнате – сфинксы одинаковой хиральности также имели тенденцию группироваться вместе, как показано на диаграмме ниже.

Даже в симметричных системах правая (красная) и левая (синяя) киральности кластеризуются. (Huber et al., Physical Review Research, 2024 г.)

Даже в такой базовой, урезанной модели киральности, моделирование показывает, что из хаоса могут возникать закономерности, и что похожие молекулы, по-видимому, тяготеют к подобным.

Обнаружение каких-либо правил, лежащих в основе этих геометрических узоров, могло бы помочь исследователям во многих областях науки, возможно, понять суть структура внешней оболочки вирусов или как магнетизм мог запустить цепную реакцию, которая в конечном итоге привела к молекулярной асимметрии жизни.

Это исследование было опубликовано в журнале Physical Review Research.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Соседка нашей Галактики потенциально разорван его большим братом

Команда исследователей из Университета Нагоя обнаружила доказательства того, что маленькое магеллановое облако потенциально разрывается гравитационными…

15.04.2025

Есть что -то особенное в метеорах, которые сталкиваются с землей

Многое из того, что ученые знают о ранней солнечной системе, исходит от метеоритов-древних пород, которые…

15.04.2025

Поразительные доказательства дисбаланса воды на луне намекают на столкновение

Распределение воды внутри Луны, по-видимому, несколько однобокое. Поверхности двух полушарий Луны заметно отличаются друг от…

14.04.2025

Триллионт второй камеры затвора, защелкивает хаос в действии

Чтобы сфотографироваться, лучшие цифровые камеры на рынке открывают свой затвор. -0.45px; "> В 2023 году…

13.04.2025

Пробуждение дикого поведения Черной дыры заставляет астрономы озадаченными

Супермассивная черная дыра, 300 миллионов легких лет, на расстоянии астрофизиков в тупике. -> Это само…

12.04.2025

Крошечный кусок мозга мыши наконец -то был нанесен на карту в деталях,

Попытка понять сложность мозга немного похожа на попытку понять обширность пространства-она выходит далеко за рамки…

11.04.2025