Новости

Физики разработали ключевое устройство для получения термоядерной энергии

Физики, работающие над термоядерным реактором, называемым стелларатором, становятся все ближе к тому, чтобы на самом деле использовать мощь ядерного синтеза.

Согласно новой статье, стелларатор Wendelstein 7-X в Германии теперь может удерживать тепло, которое достигает температур в два раза выше, чем в ядре Солнца. Это означает, что физикам удалось снизить тепловые потери — важный шаг вперед в технологии стеллараторов.

«Это действительно захватывающая новость для термоядерного синтеза, что эта конструкция оказалась успешной», — сказал физик Новимир Паблант из Принстонской лаборатории физики плазмы (PPPL). «Это ясно показывает, что такого рода оптимизация возможна».

Термоядерная энергия находится в центре внимания усилий по развитию энергетики во всем мире. Теоретически способ основан на использовании энергии, выделяющейся при слиянии ядер в плазме, для производства более тяжелого элемента: тот же процесс, который происходит в звездах. Если бы мы смогли добиться этого, выгоды были бы огромными — чистая, высокоэффективная энергия, которая практически неисчерпаема.

Однако легче сказать, чем сделать. Слияние ядер — чрезвычайно энергичный процесс, и сдержать его непросто. Энергия термоядерного синтеза была впервые исследована в 1940-х годах; Спустя десятилетия термоядерные реакторы по-прежнему не производят столько энергии, сколько теряют, с довольно значительным отрывом, хотя разрыв сокращается.

Wendelstein 7-X. (Бернхард Людвиг / Институт физики плазмы Макса Планка)

Технология термоядерного синтеза, в настоящее время побивающая температурные рекорды, — это токамак — петля плазмы в форме пончика, заключенная в оболочку из магнитных полей, движущуюся с высокой скоростью в виде быстрых импульсов. Относительная простота помогает сдерживать его при высоких температурах, но только порывами.

С другой стороны, стеллараторы основаны на невероятно сложной конфигурации магнитов, созданной ИИ, которая может направлять плазму, чтобы она продолжала течь. Их довольно сложно спроектировать и построить, что привело к появлению стеллараторов пропускающих довольно много энергии, произведенной термоядерным синтезом, в виде тепловых потерь.

Потеря тепла является результатом процесса, называемого неоклассическим переносом, при котором сталкивающиеся ионы в термоядерном реакторе вызывают диффузию плазмы наружу. Его действие в стеллараторах больше, чем в токамаках.

Поскольку у токамаков есть свои недостатки, исследователи из PPPL и Института физики плазмы Макса Планка попытались придать форму магнитам в W7-X, чтобы попытаться уменьшить эффекты неоклассического транспорта. А теперь измерения, проведенные с помощью прибора, называемого рентгеновским кристаллическим спектрометром (XICS), показали очень высокие температуры внутри реактора.

Стелларатор смог достичь температуры почти 30 миллионов градусов.

Команда обнаружила, что это было бы возможно только в том случае, если бы произошло резкое сокращение неоклассического переноса. Они провели моделирование, чтобы определить, сколько тепла было бы потеряно через неоклассический перенос, если бы W7-X не был оптимизирован, и обнаружили, что 30 миллионов Кельвинов — это выход за рамки допустимого.

Этот захватывающий результат представляет собой значительный шаг вперед в совершенствовании конструкции стелларатора, который будет определять будущие разработки.

Это также значительный шаг к созданию практического термоядерного реактора, хотя предстоит еще много работы. Чтобы термоядерный реактор был практичным, он должен иметь не только высокие температуры, но и правильную плотность плазмы и приличное время удержания. Несмотря на то, что токамаки нагреваются, сокращение потерь энергии гарантирует, что стеллараторная технология по-прежнему будет иметь преимущество.

Исследование опубликовано в журнале Nature.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Curiosity обнаружил на Марсе «обитаемое» земное прошлое, но как туда попал кислород?

Камни, исследованные марсоходом Curiosity на дне древнего, давно высохшего озера на Марсе, выявили условия, которые,…

04.05.2024

Новая беспроводная технология 6G в 500 раз быстрее, чем средние смартфоны 5G

Подключение пятого поколения или «5G» для сотовых технологий стало стандартом для сетей всего около пяти…

03.05.2024

Семь редких нейтрино высоких энергий обнаружены в гигатонне чистого льда

Каждую секунду через вас проходит около триллиона крошечных частиц, называемых нейтрино. Созданные во время Большого…

03.05.2024

Дикая, экстремальная экзопланета, покрытая облаками испаренной породы – но только ночью

На ночной стороне экзопланеты Астролабос всегда темно и бурно.Там, в постоянной тени, обращенной в сторону…

03.05.2024

Видео с аппарата Solar Orbiter запечатлело пушистые плазменные структуры Солнца в завораживающих деталях

Вы видели Солнце, но никогда не видели его таким. Этот единственный кадр из видео, снятого…

03.05.2024

Физики смоделировали черную дыру в лаборатории. Затем он начал светиться.

Аналог черной дыры может рассказать нам кое-что о неуловимом излучении, теоретически испускаемом реальной вещью.Использование цепочки…

30.04.2024