Категории: Новости

Физики объявляют о прорыве в области квантовой когерентности при комнатной температуре

Тепло — враг квантовой неопределенности. Располагая поглощающие свет молекулы упорядоченным образом, физики в Японии поддерживают критическое, еще не определенное состояние спинов электронов в течение 100 наносекунд при комнатной температуре.

Эта инновация может иметь глубокие последствия. влияние на прогресс в разработке квантовых технологий, которые не полагаются на громоздкое и дорогое охлаждающее оборудование, необходимое в настоящее время для поддержания частиц в так называемой «когерентной» форме.

В отличие от того, как мы описываем объекты в наши дни В современной жизни, обладающей такими качествами, как цвет, положение, скорость и вращение, квантовые описания объектов подразумевают нечто менее устоявшееся. Пока их характеристики не будут зафиксированы при беглом взгляде, мы должны относиться к объектам так, как будто они размазаны по широкому пространству, вращаясь в разных направлениях, но при этом применять простые измерения.

Правила, регулирующие это Множество возможностей, называемых суперпозициями, предоставляют инженерам целый набор математических трюков. Их можно использовать в качестве специальных компьютеров для обработки чисел или для использования мер безопасности при общении, и даже использовать в сверхчувствительных устройствах измерения и формирования изображений.

Тем не менее, каждое взаимодействие с окружающей средой меняет эту дымку. возможности каким-то образом. С одной стороны, это полезно. Квантовые компьютеры полагаются на запутанность частиц друг с другом для точной настройки их суперпозиций. Квантовые датчики полагаются на точное взаимодействие между суперпозицией и окружающей средой для измерения своего окружения.

Увеличьте температуру, стук трясущихся атомов и ослепляющее сияние электромагнетизма легко превратят связный гул возможность частицы превратиться в бесполезный кусок скучного старого электрона.

Это не такая уж большая проблема, если у вас есть ресурсы для прокачки сверххолодных жидкостей через ваше оборудование, чтобы снизить этот шум. Но о чем действительно мечтает каждый квантовый физик, так это о том, как снизить затраты, запуская свои устройства при температурах, значительно превышающих точку замерзания.

Подобный подвиг уже совершался ранее в специально разработанных комплексах из металлов, сохраняющих квантовые состояния. в форме суперпозиции ровно настолько, чтобы они могли быть относительно полезными.

В этом новом прорыве исследователи впервые использовали другой тип материала, называемый металлоорганическим каркасом (MOF). В эту структуру они встроили молекулы, называемые хромофорами, которые поглощают и излучают свет определенных длин волн.

«MOF в этой работе представляет собой уникальную систему, которая может плотно накапливать хромофоры. Кроме того, нанопоры внутри кристалла позволяют хромофор вращается, но под очень ограниченным углом», — говорит Нобухиро Янаи, физик из Университета Кюсю.

При этом пары электронов в этих хромофорах с совпадающим спином перемещаются в новое расположение, которое действуют в суперпозиции. Хотя это явление тщательно изучалось в технологии солнечных батарей, оно все еще использовалось в целях квантового зондирования.

В эксперименте, проведенном Янаи, группа исследователей использовала микроволны для исследования электронов в своих солнечных батареях. трансформированные состояния, чтобы продемонстрировать, что они могут оставаться когерентными в форме суперпозиции в течение примерно 100 миллиардных долей секунды при комнатной температуре – приличная продолжительность, которую можно увеличить с помощью некоторой тонкой настройки.

«Это может открыть двери к молекулярным квантовым вычислениям при комнатной температуре, основанным на множественном управлении квантовыми вентилями и квантовом распознавании различных целевых соединений», — говорит Янаи.

Это исследование было опубликовано в журнале Science Advances.

>

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Ученые показали первый крупный план звезды за пределами нашей галактики, сделанный человечеством

Звезда, находящаяся на расстоянии более 160 000 световых лет от Земли, только что стала эпическим объектом…

22.11.2024

Астрономы представили впечатляющие новые изображения лица Солнца

74 миллиона километров — это огромное расстояние, с которого можно что-то наблюдать. Но 74 миллиона…

22.11.2024

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024