Хранение и передача информации — фундаментальная часть любой вычислительной системы, и если мы собираемся извлечь выгоду из скорости и безопасности квантовых компьютеров и квантового Интернета, то нам нужно выяснить, как перемещать квантовые данные.
Один из подходов ученых к этому — использование оптической квантовой памяти или использование света для хранения данных в виде карт состояний частиц, и новое исследование сообщает о том, что физикам удалось успешное хранение и передача света с использованием квантовая памяти.
Исследователи не смогли передать свет очень далеко — всего на 1,2 миллиметра — но описанный процесс может стать основой квантовых компьютеров и систем связи будущего с квантовым питанием.
Чтобы добиться этого, ученые использовали ультрахолодные атомы рубидия-87 в качестве носителя света, показав высокий уровень как эффективности, так и срока службы — то, что физики всегда стараются максимизировать.
Сама легкая частица эффективно отображается в состояниях возбуждения среди электронов атома. Это формирует электронно-фотонное партнерство, называемое поляритоном, позволяя свету накапливаться в электронном гудении атома. Затем использовалась оптическая конвейерная лента для перемещения атомов с «грузом» света из одного места в другое.
«Мы сохранили свет, поместив его, так сказать, в чемодан, только в нашем случае чемодан был сделан из облака холодных атомов», — говорит физик Патрик Виндпассинджер из Университета Майнца в Германии. «Мы переместили этот чемодан на небольшое расстояние, а затем снова включили свет.
«Это очень интересно не только для физики в целом, но и для квантовой коммуникации, потому что свет не легко «уловить», и если вы хотите транспортировать его в другое место контролируемым образом, он обычно теряется».
Установка, которую придумали Виндпассинджер и его коллеги, показывает, что свет может переноситься с очень небольшим влиянием на его свойства, что очень важно, если вы хотите перемещать информацию из одной точки в другую.
Эта работа основана на аналогичном методе, известном как электромагнитно индуцированная прозрачность или EIT, где атомы могут использоваться в качестве хранилища для улавливания и отображения световых импульсов. Поскольку этот процесс обратим, световые импульсы можно будет получить снова в будущем.
Что нового здесь, так это то, что EIT адаптирована для перемещения света на расстояние, превышающее размер самого носителя информации. Свет не просто упаковывают в чемодан, а затем снова вытаскивают, он также перемещается — это нелегко сделать, избегая любого повышения температуры или каких-либо перемещений внутри носителя.
Как и следовало ожидать от такого рода инноваций, предстоит пройти долгий путь, прежде чем они станут практичными, и теперь исследователи хотят попытаться увеличить емкость хранения системы и расстояние, на которое ее можно переместить.
Исследование было опубликовано в Physical Review Letters.
Астрофизики как никогда близки к разгадке тайны того, что составляет почти 70 процентов Вселенной.Теперь опубликован…
В каждой ситуации есть светлая сторона. В 2032 году сама Луна может иметь особенно яркую…
Коробка, полная вирусов и бактерий, завершила свой обратный путь на Международную космическую станцию, и изменения,…
Мы знали о знаменитой туманности Кольцо уже почти 250 лет, но только сейчас астрономы обнаружили…
Внутри ядер ледяных планет-гигантов давление и температура настолько экстремальны, что находящаяся там вода переходит в…
Мы знаем, что произойдет с Солнцем и нашей Солнечной системой, потому что мы можем заглянуть…