Категории: Новости

Физики нашли способ смоделировать зарождение быстрых радиовсплесков

Быстрые радиовсплески — одна из величайших космических загадок нашего времени. Это чрезвычайно мощные, но чрезвычайно короткие взрывы электромагнитного излучения в радиодиапазоне, высвобождающие за миллисекунды столько энергии, сколько 500 миллионов солнц.

В течение многих лет ученые ломали голову над тем, что может быть причиной этих коротких вспышек, обнаруженных в галактики от миллионов до миллиардов световых лет от нас. Затем, в апреле 2020 года, мы получили действительно сильную зацепку: короткую мощную вспышку радиоволн от чего-то внутри Млечного Пути — магнетара.

Это говорит о том, что по крайней мере некоторые быстрые радиовсплески производятся эти чрезвычайно намагниченные мертвые звезды. Теперь физики разработали способ воспроизвести в лаборатории то, что, как мы думаем, происходит на первых стадиях этих безумных взрывов, согласно теории квантовой электродинамики (КЭД).

«Наша лабораторная симуляция — это небольшая масштабный аналог среды магнитара», — говорит физик Кенан Ку из Принстонского университета. «Это позволяет нам анализировать плазму пар КЭД».

Магнетар — это тип мертвой звезды, называемый нейтронной звездой. Когда срок жизни массивной звезды подходит к концу, ее внешний материал сдувается, а ядро, больше не поддерживаемое внешним давлением ядерного синтеза, разрушается под действием собственной гравитации, образуя сверхплотный объект с мощным магнитным полем. . Это нейтронная звезда.

Некоторые нейтронные звезды обладают еще более мощным магнитным полем. Это магнетар. Мы не знаем, как им это удается, но их магнитные поля примерно в 1000 раз мощнее, чем у обычной нейтронной звезды, и в квадриллион раз мощнее, чем у Земли.

Ученые считают, что быстро радиовсплески являются результатом напряженности между магнитным полем, настолько сильным, что оно искажает форму магнетара, и внутренним давлением гравитации.

Считается, что магнитное поле также отвечает за преобразование материи в пространстве. вокруг магнитара в плазму, состоящую из пар материи-антиматерии. Эти пары состоят из отрицательно заряженного электрона и положительно заряженного позитрона, и считается, что они играют роль в излучении редких быстрых радиовсплесков, которые повторяются.

Эта плазма называется парной плазмой, и она сильно отличается от большей части плазмы во Вселенной. Нормальная плазма состоит из электронов и более тяжелых ионов. Пары материи-антиматерии в парной плазме имеют равные массы и спонтанно образуются и аннигилируют друг друга. Коллективное поведение парной плазмы сильно отличается от поведения обычной плазмы.

Поскольку сила задействованных магнитных полей настолько велика, Ку и его коллеги разработали способ создания парной плазмы в лаборатории с помощью других средств. .

«Вместо того, чтобы имитировать сильное магнитное поле, мы используем сильный лазер, — объясняет Цюй.

«Он преобразует энергию в парную плазму посредством так называемых каскадов КЭД. Пара затем плазма смещает лазерный импульс на более высокую частоту. Этот захватывающий результат демонстрирует перспективы создания и наблюдения парной плазмы КЭД в лабораториях и позволяет проводить эксперименты для проверки теорий о быстрых радиовсплесках».

Метод включает в себя создание высокоскоростной электронный пучок, движущийся со скоростью, близкой к скорости света. По этому лучу стреляет лазер средней мощности, и в результате столкновения создается парная плазма.

Более того, он замедляет образовавшуюся плазму. Это могло бы решить одну из проблем, обнаруженных в предыдущих экспериментах по созданию парной плазмы, — наблюдение за их коллективным поведением.

«Мы думаем, что знаем, какие законы управляют их коллективным поведением. Но пока мы на самом деле не создадим парную плазму в лаборатории, демонстрирующей коллективные явления, которые мы можем исследовать, мы не можем быть в этом абсолютно уверены», — говорит физик Нат Фиш из Принстонского университета.

«Проблема в том, что коллективное поведение в парной плазме, как известно, трудно наблюдать. Таким образом, важным шагом для нас было подумать об этом как о совместной проблеме производства и наблюдения, признав, что отличный метод наблюдения ослабляет условия того, что должно быть произведено, и, в свою очередь, приводит нас к более практичному пользовательскому объекту». p>

Эксперимент по наблюдению еще предстоит провести, но он предлагает способ проведения этих исследований, который раньше был невозможен. Это снижает потребность в чрезвычайно мощном оборудовании, которое может выходить за рамки наших технических возможностей и бюджета.

В настоящее время команда готовится проверить свои идеи с помощью серии экспериментов в Национальной ускорительной лаборатории SLAC. Они надеются, что это поможет им узнать, как магнетары генерируют парную плазму, как эта парная плазма может производить быстрые радиовсплески, и определить, какие ранее неизвестные физические явления могут быть задействованы.

«В некотором смысле, кто мы есть Это начало каскада радиовсплесков, — говорит физик Себастьян Мерен из Стэнфордского университета и SLAC. , Но первая часть состоит в том, чтобы просто наблюдать за рассеянием электронных лучей, и как только мы это сделаем, мы улучшим интенсивность лазера, чтобы достичь более высоких плотностей, чтобы действительно увидеть электрон-позитронные пары.Идея состоит в том, что наш эксперимент будет развиваться в течение следующих двух лет или около того.»

Таким образом, может пройти немного больше времени, пока мы не получим ответы на быстрые радиовсплески. Но если мы чему-то и научились за эти годы, так это тому, что разгадка этой увлекательной тайны определенно стоит ожидания.

Статья команды опубликована в журнале Physics of Plasmas..

р>

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024

Ученые впервые раскрыли форму короны черной дыры

Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…

19.11.2024

Ученые обнаружили галактики-монстры, скрывающиеся в ранней Вселенной

В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…

19.11.2024