Квантовая механика имеет дело с поведением Вселенной в сверхмалом масштабе: атомы и субатомные частицы действуют так, как не может объяснить классическая физика.
Чтобы исследовать это противоречие между Квантовые и классические, ученые постоянно пытаются заставить все большие и большие объекты вести себя квантовоподобным образом.
Еще в 2021 году команде удалось создать крошечную стеклянную наносферу диаметром 100 нанометров. примерно в тысячу раз меньше толщины человеческого волоса.
На наш взгляд, это очень, очень мало, но с точки зрения квантовой физики это на самом деле довольно много, состоит из до 10 миллионов атомов.
Введение такой наносферы в область квантовой механики было огромным достижением. Используя тщательно откалиброванные лазерные лучи, наносфера была подвешена в своем самом низком квантово-механическом состоянии, одном из крайне ограниченных движений, при которых может начаться квантовое поведение.
«Такой метод используется впервые. управлять квантовым состоянием макроскопического объекта в свободном пространстве», — сказал Лукас Новотны, профессор фотоники из ETH Zurich в Швейцарии, еще в июле 2021 года.
Для достижения квантовых состояний движение и энергия должны быть набрал прямо вниз. Новотный и его коллеги использовали вакуумный контейнер, охлажденный до -269 градусов по Цельсию (-452 градуса по Фаренгейту), а затем использовали систему обратной связи для дальнейшей настройки.
Используя интерференционные картины, генерируемые двумя лазерными лучами, исследователи рассчитали точное положение наносферы внутри ее камеры — и оттуда точные настройки, необходимые для приближения движения объекта к нулю, используя электрическое поле, создаваемое двумя электродами.
Это не так уж и отличается от замедления качелей на игровой площадке, толкая и тяня их, пока они не остановятся. Как только это самое низкое квантово-механическое состояние будет достигнуто, можно будет начинать дальнейшие эксперименты.
«Чтобы четко увидеть квантовые эффекты, наносферу необходимо замедлить… до ее движущегося основного состояния», — сказал инженер-электрик Феликс. Теббенйоханнс из ETH Zurich в то время.
«Это означает, что мы замораживаем энергию движения сферы до минимума, который близок к квантовомеханическому движению нулевой точки.»
Хотя аналогичные результаты были достигнуты ранее, они использовали так называемый оптический резонатор для балансировки объектов с помощью света.
Примененный здесь подход лучше защищает наносферу от возмущений и означает, что объект можно рассматривать в изоляция после выключения лазера, хотя это потребует множества дальнейших исследований.
Исследователи надеются, что их выводы могут быть полезны в изучении того, как квантовая механика заставляет элементарные частицы вести себя как волны. Вполне возможно, что сверхчувствительные установки, такие как эта наносфера, также могут помочь в разработке датчиков следующего поколения, превосходящих все, что у нас есть сегодня.
Умение поднимать в воздух такую большую сферу в криогенной среде представляет собой значительный скачок. к макроскопическому масштабу, где можно изучить грань между классической и квантовой механикой.
«Вместе с тем фактом, что потенциал оптической ловушки хорошо контролируется, наша экспериментальная платформа предлагает путь к исследованию квантовой механики на макроскопическом уровне. шкалы», — заключили исследователи в своей опубликованной статье.
Исследование было опубликовано в журнале Nature.
Версия этой статьи была впервые опубликована в июле 2021 года.
Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…
В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…
Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…
В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…
Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…
В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…