Категории: Новости

Физики левитировали стеклянную наносферу, подталкивая ее в область квантовой механики

Квантовая механика имеет дело с поведением Вселенной в сверхмалом масштабе: атомы и субатомные частицы действуют так, как не может объяснить классическая физика.

Чтобы исследовать это противоречие между Квантовые и классические, ученые постоянно пытаются заставить все большие и большие объекты вести себя квантовоподобным образом.

Еще в 2021 году команде удалось создать крошечную стеклянную наносферу диаметром 100 нанометров. примерно в тысячу раз меньше толщины человеческого волоса.

На наш взгляд, это очень, очень мало, но с точки зрения квантовой физики это на самом деле довольно много, состоит из до 10 миллионов атомов.

Введение такой наносферы в область квантовой механики было огромным достижением. Используя тщательно откалиброванные лазерные лучи, наносфера была подвешена в своем самом низком квантово-механическом состоянии, одном из крайне ограниченных движений, при которых может начаться квантовое поведение.

«Такой метод используется впервые. управлять квантовым состоянием макроскопического объекта в свободном пространстве», — сказал Лукас Новотны, профессор фотоники из ETH Zurich в Швейцарии, еще в июле 2021 года.

Для достижения квантовых состояний движение и энергия должны быть набрал прямо вниз. Новотный и его коллеги использовали вакуумный контейнер, охлажденный до -269 градусов по Цельсию (-452 градуса по Фаренгейту), а затем использовали систему обратной связи для дальнейшей настройки.

Используя интерференционные картины, генерируемые двумя лазерными лучами, исследователи рассчитали точное положение наносферы внутри ее камеры — и оттуда точные настройки, необходимые для приближения движения объекта к нулю, используя электрическое поле, создаваемое двумя электродами.

Это не так уж и отличается от замедления качелей на игровой площадке, толкая и тяня их, пока они не остановятся. Как только это самое низкое квантово-механическое состояние будет достигнуто, можно будет начинать дальнейшие эксперименты.

«Чтобы четко увидеть квантовые эффекты, наносферу необходимо замедлить… до ее движущегося основного состояния», — сказал инженер-электрик Феликс. Теббенйоханнс из ETH Zurich в то время.

«Это означает, что мы замораживаем энергию движения сферы до минимума, который близок к квантовомеханическому движению нулевой точки.»

Хотя аналогичные результаты были достигнуты ранее, они использовали так называемый оптический резонатор для балансировки объектов с помощью света.

Примененный здесь подход лучше защищает наносферу от возмущений и означает, что объект можно рассматривать в изоляция после выключения лазера, хотя это потребует множества дальнейших исследований.

Исследователи надеются, что их выводы могут быть полезны в изучении того, как квантовая механика заставляет элементарные частицы вести себя как волны. Вполне возможно, что сверхчувствительные установки, такие как эта наносфера, также могут помочь в разработке датчиков следующего поколения, превосходящих все, что у нас есть сегодня.

Умение поднимать в воздух такую ​​большую сферу в криогенной среде представляет собой значительный скачок. к макроскопическому масштабу, где можно изучить грань между классической и квантовой механикой.

«Вместе с тем фактом, что потенциал оптической ловушки хорошо контролируется, наша экспериментальная платформа предлагает путь к исследованию квантовой механики на макроскопическом уровне. шкалы», — заключили исследователи в своей опубликованной статье.

Исследование было опубликовано в журнале Nature.

Версия этой статьи была впервые опубликована в июле 2021 года.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Тени Луны могли содержать микробы. Вот почему это беспокойство.

Могут ли микробы выжить в постоянно тенированных регионах (PSR) Луны? Осевой наклон. Это исследование может…

03.04.2025

Звезды тоже получают черви, и «песни» могут рассказать нам свою историю

«Музыка» станородок-огромные вибрации, вызванные разрывами пузырьков газа, которые волнуют по всему телам многих звезд-могут раскрыть…

03.04.2025

Паркер -зонд повторяет щетку с солнцем в Сорвиголова

Солнечный зонд Parker's NASA повторил свои рекордсменные показатели декабря 2024 года, провалившись в рамках ожапывающего…

02.04.2025

«Городской убийца» астероидный удар по-прежнему возможным (только не с землей)

Как раз тогда, когда вы думали, что можете расслабиться о предполагаемом «городском убийце» астероида 2024…

02.04.2025

Огромный 56-мильный разбил частиц возможен, говорит CERN Report

Европа лаборатория CERN заявила в понедельник, что подробный анализ не выявил никаких технических препятствий для…

01.04.2025

Новая «полудействие», наполовину огневая фаза вещества, скрывающаяся в магните

Экзотическое состояние материи было обнаружено, скрывающимся в предыдущем экзотическом состоянии, которое обнаружилось в магнитном соединении…

01.04.2025