Категории: Новости

Алмаз можно сжать во что-то еще более твердое. Теперь мы знаем, как это сделать.

Моделирование неуловимой молекулы углерода, которая из-за твердости оставляет алмазы в пыли, может проложить путь к ее созданию в лаборатории.

Известная как восьмиатомная объемно-центрированная кубическая фаза (BC8), Ожидается, что такая конфигурация будет на 30 процентов более устойчива к сжатию, чем алмаз – самый твердый из известных стабильных материалов на Земле.

Физики из США и Швеции провели квантово-точное молекулярно-динамическое моделирование на суперкомпьютере, чтобы Посмотрите, как алмаз вел себя под высоким давлением, когда температура выросла до уровня, который должен был сделать его нестабильным, и открыли новые подсказки об условиях, которые могли подтолкнуть атомы углерода в алмазе к необычной структуре.

Фаза BC8 ранее была обнаружена наблюдался здесь, на Земле, в двух материалах: кремнии и германии. Экстраполяция свойств BC8, наблюдаемых в этих материалах, позволила ученым определить, как эта фаза будет проявляться в углероде.

Фаза углерода BC8 не существует на Земле, хотя считается, что она скрывается в космосе в среда высокого давления глубоко внутри экзопланет. Теория предполагает, что это самая твердая форма углерода, которая может оставаться стабильной при давлении, превышающем атмосферное давление Земли в 10 миллионов раз. Если бы его можно было синтезировать и стабилизировать ближе к дому, это открыло бы удивительные возможности для исследований и применения материалов.

Алмаз считается таким твердым из-за его атомной структуры. Он устроен в виде тетраэдрической решетки: каждый атом углерода внутри него тетраэдрически связан со своими четырьмя ближайшими соседями, что соответствует оптимальной конфигурации крайних электронов самого атома углерода.

«Структура BC8 сохраняет эту идеальную тетраэдрическую форму ближайшего соседа, но без плоскостей спайности, присущих структуре ромба», говорит физик Джон Эггерт Ливерморской национальной лаборатории имени Лоуренса. «Фаза углерода BC8 в условиях окружающей среды, вероятно, будет намного прочнее, чем алмаз».

Однако, хотя углерод BC8 должен быть способен существовать в условиях окружающей среды, попытки синтезировать его в лаборатории потерпели неудачу. Группа исследователей под руководством физика Киена Нгуена Конга из Университета Южной Флориды использовала возможности суперкомпьютеров, чтобы попытаться выяснить, где эти попытки пошли не так.

Суперкомпьютер Frontier в Национальной лаборатории Ок-Ридж на данный момент самый быстрый суперкомпьютер в мире. Используя это невероятное оборудование, команда разработала симуляцию, описывающую взаимодействия между отдельными атомами в очень широком диапазоне давлений и температурных условий. Запустив это моделирование на Frontier, они смогли воспроизвести эволюцию миллиардов атомов углерода в экстремальных условиях.

Результаты выявили причину, по которой синтез углерода BC8 так трудно осуществить.

«Мы предсказали, — объясняет физик Иван Оленик из Университета Южной Флориды, — что посталмазная фаза BC8 будет экспериментально доступна только в узкой области высокого давления и высокой температуры фазовой диаграммы углерода».

Другими словами, существует лишь очень маленькая область высокого давления и температуры, в которой может образовываться углерод BC8, и до сих пор эксперименты не соответствовали этим условиям. С другой стороны, теперь, когда мы знаем, каковы эти условия, синтез углерода BC8, наконец, может быть достижим.

В настоящее время исследователи проводят теоретические эксперименты в Национальном центре зажигания, чтобы сделать это. просто… так что следите за этим.

Результаты были опубликованы в The Journal of Physical Chemistry Letters.

Виктория Ветрова

Космос полон тайн...

Недавние Посты

Самая известная теория Эйнштейна только что преодолела самый большой вызов за всю историю

Математика, которую Альберт Эйнштейн разработал для описания гравитационного механизма физической Вселенной в начале 20 века,…

21.11.2024

Почти треть всех звезд может содержать остатки планет, подобных Земле

В последние годы астрономы разработали методы измерения содержания металлов в звездах с чрезвычайной точностью. Обладая…

20.11.2024

Новая технология печати ДНК может произвести революцию в том, как мы храним данные

Какими бы эффективными ни были электронные системы хранения данных, они не имеют ничего общего с…

19.11.2024

У этого странного кристалла две точки плавления, и мы наконец знаем, почему

В 1896 году немецкий химик Эмиль Фишер заметил нечто очень странное в молекуле под названием…

19.11.2024

Ученые впервые раскрыли форму короны черной дыры

Если вам посчастливилось наблюдать полное затмение, вы наверняка помните ореол яркого света вокруг Луны во…

19.11.2024

Ученые обнаружили галактики-монстры, скрывающиеся в ранней Вселенной

В ранней Вселенной, задолго до того, как они успели вырасти, астрономы обнаружили то, что они…

19.11.2024